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A wave problem in an unbounded domain is often treated numerically by truncating
the infinite domain via an artificial boundaryB, imposing a so-called nonreflecting
boundary condition (NRBC) onB, and then solving the problem numerically in the
finite domain bounded byB. A general approach is devised here to construct high-
order local NRBCs with a symmetric structure and with only low (first- or second-)
order spatial and/or temporal derivatives. This enables the practical use of NRBCs
of arbitrarily high order. In the case of time-harmonic waves with finite element dis-
cretization, the approach yields a symmetricC0 finite element formulation in which
standard elements can be employed. The general methodology is presented for both
the time-harmonic case (Helmholtz equation) and the time-dependent case (the wave
equation) and is demonstrated numerically in the former case.c© 2001 Academic Press

Key Words:waves; high-order; artificial boundary; nonreflecting boundary condi-
tion; finite element.

1. INTRODUCTION

A common method used for the numerical solution of wave problems in an unbounded
domain [1] is based on truncating the domain via an artificial boundaryB, thus forming a
finite computational domainÄ bounded byB. A so-called nonreflecting boundary condition
(NRBC) is imposed onB to complete the statement of the problem (i.e., to make the solution
unique) and, most importantly, to ensure that no (or little) spurious wave reflection occurs
fromB. Then the problem is solved numerically inÄ (see Fig. 1). Naturally, the quality of
the numerical solution strongly depends on the properties of the NRBC employed. In the
past two decades, much research has been done to develop NRBCs that after discretization
lead to a scheme which is stable, accurate, efficient, and easy to implement; see [2] and [3]
for recent reviews on the subject. Of course, it is difficult to find a single NRBC which is
ideal in all respects and all cases; this is why the quest for better NRBCs and their associated
discretization schemes continues.
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FIG. 1. Setup for the method of NRBCs. The artificial boundaryB truncates the infinite domain, thus forming
a finite computational domainÄ. A nonreflecting boundary condition (NRBC) is applied onB, and the problem
in Ä is solved numerically. (a) Wave guide configuration. (b) Exterior problem configuration.

The collection of NRBCs that have been proposed can be divided into two sets:nonlo-
cal and local NRBCs. Nonlocal NRBCs, the main example of which is the Dirichlet-to-
Neumann (DtN) condition [1–3], are typically exact (or exact up to a series truncation error
which can be made vanishingly small), whereas local NRBCs are usually approximate. Var-
ious sequences of local NRBCs with increasing order of accuracy have been devised, e.g.,
the sequences of Engquist and Majda [4], Bayliss and Turkel [5], Feng [6], Higdon [7], and
Givoli et al. [8, 9]. The Engquist–Majda NRBCs are based on approximating the symbol
of the governing pseudo-differential operator by rational functions, the Bayliss–Turkel and
Feng NRBCs are two types of asymptotic conditions, the Higdon NRBCs annihilate wave
reflection in a finite number of specified directions, and the NRBCs of Givoliet al. are
obtained by localizing the exact nonlocal DtN condition in some “optimal” way.

A detailed comparison of the properties of nonlocal and local NRBCs appears in [3].
The nonlocal DtN condition is robust, very accurate, stable, and, in the context of the finite
element (FE) method, leads to a well-conditioned symmetric matrix problem. However, it
may involve special functions that are not convenient to compute, it must be used on an
artificial boundaryB of a simple smooth shape, and it often affects negatively the sparseness
of the coefficient matrix in the discrete scheme (e.g., the FE stiffness matrix). It should be
noted, however, that in the elliptic case some strong arguments may be made to show that
these relative disadvantages may be overcome or that they are not really as negative as one
may think [3, 10]. A more serious difficulty is that in some important cases an expression
for the exact DtN condition is not available or is too complicated to be practical.

Local NRBCs can be used in principle on a generally shaped boundaryB and are com-
patible with local FE architecture (where all operations are performed on the element level).
However,low-order local NRBCs may have low accuracy (at least in some cases, which
always exist), whereashigh-order local NRBCs are usually hard to implement because
they typically involve high-order derivatives. Clearly, standardC0 FEs cannot be used in
the presence of high-ordertangentialderivatives. Even if the NRBC involves only high
normal derivatives, this requires the use of high-order FE interpolation, with associated
difficulties. The appearance of high-ordertemporalderivatives is also problematic from a
numerical time-integration standpoint. In addition, most high-order NRBCs, if used in a
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straightforward manner, lead to a nonsymmetric and ill-conditioned FE scheme. Similar
difficulties exist with other discretization methods, such as finite differences. Until recently
a very-high-order local NRBC has never been used because of these reasons. The most
popular NRBCs are first- and second-order conditions, which are easy to implement but
not always sufficiently accurate. Rarely has an NRBC involving a third- or a fourth-order
derivative been used.

One approach in the context of FEs to deal with high-order tangential derivatives that
occur in an NRBC is to develop and use special FEs that possess high-order regularity
onB. A hierarchy of such two-dimensional elements was first introduced in [11], and then
extended in [12] to three dimensions and in [8] top-type elements. The latter paper includes
calculations done with a local NRBC involving a sixth-order tangential derivative. While
it is possible in principle to use this approach with a very high-order NRBC, this is not so
practical since the coding of the special elements is difficult, and moreover each element in
the hierarchy must be coded separately.

Recently, some new sequences of local high-order NRBCs thatdo not involve high-order
derivativesat all have been proposed by several researchers. Instead, these NRBCs involve
auxiliary variablesdefined onB. Thus, the differential order of the NRBC is reduced at the
price of increasing the number of unknowns in the problem. If the construction is explicit
enough, it can be coded once and for all and thus allows the practical use of an NRBC of
anarbitrarily high order. We therefore call such NRBC an arbitrarily high-order condition
(AHOC).

The first AHOC was apparently devised by Collino [13] for two-dimensional time-
dependent waves in rectangular domains. Its construction requires the solution of the one-
dimensional wave equation onB. Grote and Keller [14, 15] proposed an AHOC for the
three-dimensional time-dependent wave equation based on spherical harmonic transfor-
mations. They extended this AHOC for the case of elastic waves in [16]. Hagstrom and
Hariharan [17, 18] constructed an AHOC for the two- and three-dimensional time-dependent
wave equations based on the analytic series representation for the outgoing solutions of these
equations. It looks simpler than the previous two AHOCs. For time-dependent waves in a
two-dimensional wave guide, Guddati and Tassoulas [19, 20] devised an AHOC by rewriting
the Engquist–Majda sequence and the Higdon sequence of NRBCs as a recursive continued
fraction.

We comment on theexactnessof AHOCs. One measure, on the continuous level, of how
accurately a given NRBC solves a specific problem is as follows. One considers the exact
solution of two problems: the first is the original problem in the infinite domain, and the
second is the problem in the truncated domainÄ, with the given NRBC applied onB. Thus
the distanceδ, in some reasonable norm, between the two solutions inÄ may serve as
an error measure. Now, if an AHOC of orderK has the property that its error measureδ
approaches zero asK goes to infinity whileB is held fixed, and if this property holds forany
given wave problem of a class under consideration, then it seems justified to call the AHOC
exact. In this sense, the Grote–Keller AHOC, the three-dimensional Hagstrom–Hariharan
AHOC, and the AHOC based on the localized DtN conditions (see Section 6) are all exact.
Note that according to our definition, the convergence property of the NRBC asK →∞
is not sufficient to merit the title “exact”; the NRBC must also be an AHOC—that is, be
implementable for an arbitrarily largeK .

In the present paper we present a systematic way to reformulate any given sequence of
NRBCs as an AHOC. In other words, for a given sequence of NRBCs involving spatial
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and/or temporal derivatives of increasing order, we construct another sequence of equiv-
alent NRBCs with only low (first- or second-) order derivatives. We do this both in the
time-harmonic case (Helmholtz equation) and in the time-dependent case (wave equation).
Interestingly, the time-harmonic case has not been treated in this context so far. Thus, this
is the first AHOC proposed for the Helmholtz equation.

One important property that the proposed AHOC possesses is that it has asymmetric
structure. Thus, if the original problem is self-adjoint, the truncated problem with the
proposed AHOC onB is also self-adjoint and hence leads to a symmetric problem on
the discrete level. In the elliptic (time-harmonic) case, there is auniqueway to obtain
such a symmetric AHOC. Therefore we shall call itthe symmetric AHOC. Considering FE
discretization, this symmetry is important for three reasons:

1. It is theoretically satisfying that the original self-adjoint problem (in an unbounded
domain) is replaced by a self-adjoint problem (in a finite domain). This would not be the
case without the symmetry property of the AHOC.

2. On the discrete level, this property ensures that the NRBC does not spoil the symmetry
of the FE formulation and thus allows the use of standard symmetric solvers, which are
more efficient than nonsymmetric solvers in computer storage and number of floating-point
operations.

3. As will be demonstrated numerically later, the symmetric AHOC is also more stable
than the original NRBC.

For the case of the Helmholtz equation, the symmetric AHOC leads to a symmetricC0

FE formulation, which enables the use of standard FEs. For the time-dependent case we
construct an analogous AHOC, which leads, after discretization in space, to a symmetric
system of linear ordinary differential equations of a standard form.

Following is the outline of the paper. In Section 2 we show how to construct the symmetric
AHOC for the Helmholtz equation, given an initial sequence of NRBCs of increasing order.
We discuss various forms of the initial sequence, involving either tangential derivatives
or normal derivatives or both. In Section 3 we discuss the FE formulation for the new
problem inÄ involving the symmetric AHOC applied onB. In Section 4 we extend the
construction of the symmetric AHOC to the time-dependent case, and in Section 5 we
discuss the corresponding FE semidiscrete formulation. All this is done for a general initial
sequence of NRBCs. In Section 6 we present the results of some numerical experiments for
the time-harmonic case using the localized DtN conditions [8, 9] as the initial sequence.
We draw conclusions regarding the effectiveness of the symmetric AHOC. We conclude
with some remarks in Section 7.

2. SYMMETRIC ARBITRARILY HIGH-ORDER CONDITIONS

FOR THE HELMHOLTZ EQUATION

We shall present the proposed methodology intwo dimensionsand inpolar coordinates.
The configuration is illustrated in Fig. 1b. However, other cases, such as three-dimensional
and wave-guide configurations, may be treated similarly.

We consider the Helmholtz equation in the plane outside of an obstacle:

∇2u+ κ2u = 0. (1)
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Hereκ is the wavenumber. Some boundary condition is given on the obstacle boundary0;
to fix ideas we consider the Neumann condition

∂u

∂ν
= h on0, (2)

where∂u/∂ν is the normal derivative ofu on0 andh is a given function. At infinity, the
Sommerfeld radiation condition holds, which dictates that waves are outgoing there. We
introduce a circular artificial boundaryB of radiusR, which encloses a finite computational
domainÄ (see Fig. 1b). We use the polar coordinate system (r, θ ) whose origin is located
such thatB is the circler = R.

On B, an NRBC is applied, as discussed in the Introduction. All sequences of local
NRBCs mentioned previously have the form (or can be written in the form)

−∂u

∂r
= L K u onB, (3)

whereL K is a differential operator, and the indexK = 0, 1, 2, . . . is the order of the NRBC.
This form is compatible with FE formulations, since variationally (3) can be treated as a
natural boundary condition. We concentrate here on NRBCs of this form.

We begin with the case whereL K involves onlytangential(θ−) derivatives ofevenorder.
We consider the case whereoddorders appear as well. Then we turn to the case whereL K

involves onlyradial derivatives. Finally, we address the general case whereboth tangential
and radialderivatives appear inL K .

2.1. NRBCs Involving Even-Order Tangential Derivatives

We consider NRBCs that involve only tangential derivatives of even order. Such NRBCs
have the form

−∂u

∂r
=

K∑
j=0

α j ∂
2 j
θ u onB, (4)

where theα j are given complex constants (that usually depend onK and R). The NRBC
(4) is particularly attractive because it leads to a symmetric variational formulation. The
Feng NRBCs [6] and the localized DtN conditions [8, 9] have this form.

Our goal is to rewrite (4) in a way that does not involve high-order derivatives. To this
end, we introduce auxiliary variables defined onB; i.e.,

v0 = u, (5)

v j = v′′j−1 = ∂2 j
θ u, j = 1, . . . , K onB. (6)

Here and elsewhere a prime indicates differentiation with respect toθ . The NRBC (4)
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together with these relations can be written in a matrix form as

−∂u/∂r

0
0
...

0
0


=



α0 α1 α2 . . . αK−2 αK−1

0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . 1 0
0 0 0 . . . 0 1





u
v1

v2
...

vK−2

vK−1



+



0 0 . . . 0 0 αK

−1 0 . . . 0 0 0
0 −1 . . . 0 0 0
...

...
...

...
...

...

0 0 . . . −1 0 0
0 0 . . . 0 −1 0





u
v1

v2
...

vK−2

vK−1



′′

. (7)

This is a linear system ofK equations and unknowns (onB). To write this system more
concisely, we define the vector of auxiliary variables as

UT = {u v1 v2 · · · vK−1}, (8)

where the superscriptT indicates transposition. We also lete1 be a vector (of dimension
K ) whose first entry is one and all other entries are zero. Thus (7) can be written as

−∂u

∂r
e1 = AU + BU′′ onB. (9)

Here,A and B are the matrices appearing in (7). Since (9) involves only second-order
derivatives, it is an AHOC according to our definition. However, (9) is not a desirable
AHOC because the matricesA andB arenonsymmetric, and therefore it would lead to a
nonsymmetric FE formulation. The question is, thus, whether it is possible to replace (9)
by the equivalent AHOC

−∂u

∂r
e1 = YU+ ZU′′ onB, (10)

where the matricesY andZ aresymmetric. The answer is positive. In fact, it can be shown,
using some simple matrix-theoretical arguments, that there areuniquesymmetric matrices
Y andZ such that (10) implies (9). (see the Appendix for the proof of the uniqueness of the
construction). These matrices are

Y =



α0 0 0 . . . 0 0 0

0 −α2 −α3 . . . −αK−2 −αK−1 −αK

0 −α3 −α4 . . . −αK−1 −αK 0
...

...
...

...
...

...
...

0 −αK−2 −αK−1 −αK 0 . . . 0

0 −αK−1 −αK 0 0 . . . 0

0 −αK 0 0 0 . . . 0


, (11)
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Z =



α1 α2 α3 . . . αK−2 αK−1 αK

α2 α3 α4 . . . αK−1 αK 0
α3 α4 α5 . . . αK 0 0
...

...
...

...
...

...
...

αK−2 αK−1 αK 0 0 . . . 0
αK−1 αK 0 0 0 . . . 0
αK 0 0 0 0 . . . 0


. (12)

It is easy to verify that the symmetric linear system (10) with the matricesY andZ given by
(11) and (12), is indeed equivalent to the original linear system (7). In fact, the equations
of the former are simply linear combinations of the equations of the latter. Equation (10) is
the desired symmetric AHOC.

2.2. NRBCs Involving Even and Odd Tangential Derivatives

Now suppose that (4) is replaced by

−∂u

∂r
=

K∑
j=0

α j ∂
j
θ u onB. (13)

In other words, suppose the initial sequence of NRBCs involves both even and odd tangential
derivatives. Such an NRBC cannot lead to a symmetric FE formulation, but it can still be
treated analogously to the previous case. In fact, all the equations of Section 2.1 are still
valid, except that the second-order tangential derivative is replaced by a first-order derivative
everywhere. Thus, the auxiliary variables are defined as

v0 = u, (14)

v j = v′j−1 = ∂ j
θ u, j = 1, . . . , K onB, (15)

and the symmetric AHOC is (cf. (10))

−∂u

∂r
e1 = YU+ ZU′ onB. (16)

The matricesY andZ are the same as in (11) and (12).

2.3. NRBCs Involving Radial Derivatives

Now we consider the case where onlyradial derivatives appear in the initial sequence of
NRBCs. Such NRBCs have the form

−∂u

∂r
= α0u+

K∑
j=2

α j ∂
j

r u onB. (17)

The Bayliss–Turkel [5] and the Higdon [7] NRBCs can be written in this form.
There are two ways to construct a symmetric AHOC for (17). The first is to mimic what

has been done in the case of tangential derivatives. Thus, the auxiliary variables are defined
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similarly to (14) and (15), but the derivatives are now radial:

v0 = u, (18)

v j = ∂r v j−1 = ∂ j
r u, j = 1, . . . , K onB. (19)

Consequently, the symmetric AHOC is (cf. (16))

−∂u

∂r
e1 = YU+ Z∂r U onB. (20)

Another difference from the previous case is that hereα1 = 0 (from (17)). The matricesY
andZ in (20) are again the same as in (11) and (12), withZ11 = 0 in the present case.

The second way to obtain a symmetric AHOC for the NRBC (17) is to first replace
the radial derivatives by tangential derivatives and then to construct the symmetric AHOC
associated with the resulting NRBC in the manner described in Section 2.1. The replacement
of r -derivatives byθ -derivatives is done by the recursive use of the Helmholtz equation (1),
which is assumed to hold alongB and insideÄ. Now we give the details of how this is
done.

In polar coordinates, (1) becomes

∂2
r u+ 1

r
∂r u+ 1

r 2
∂2
θ + κ2u = 0. (21)

Thus, we have

∂2
r u = C(2)

00 (r )u+ C(2)
10 (r )∂r u+ C(2)

01 (r )∂
2
θ u, (22)

whereC(2)
00 = −κ2,C(2)

10 = −1/r , andC(2)
01 = −1/(r 2). The explanation for the notation is

as follows:C( j )
mk is the coefficient of∂m

r ∂
2k
θ u appearing in the expression for∂ j

r u. The third
radial derivative can be expressed in terms of tangential derivatives by differentiating (22)
with respect tor and then eliminating∂2

r u by using (22) again. The end result has the form

∂3
r u = C(3)

00 u+ C(3)
10 (r )∂r u+ C(3)

01 (r )∂
2
θ u+ C(3)

11 (r )∂r ∂
2
θ u, (23)

where the coefficientsC(3)
mk can be expressed in terms of the coefficientsC(2)

mk; i.e.,

C(3)
00 = ∂r C

(2)
00 + C(2)

10 C(2)
00 , (24)

C(3)
10 = C(2)

00 + ∂r C
(2)
10 +

(
C(2)

10

)2
, (25)

C(3)
01 = ∂r C

(2)
01 + C(2)

10 C(2)
01 , (26)

C(3)
11 = C(2)

01 . (27)

In general, the expression for thej th radial derivative (forj ≥ 2) can be reduced to the
form

∂ j
r u =

(
J0∑

k=0

C( j )
0k +

J1∑
k=0

C( j )
1k ∂r

)
∂2k
θ u, (28)
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where

J0 =
{

j/2; j even

( j − 1)/2; j odd
, J1 =

{
( j − 2)/2; j even

( j − 1)/2; j odd
. (29)

General recursive formulas for the coefficientsC( j )
mk are (for j ≥ 3)

C( j )
0k =

〈
C( j−1)

1(k−1)C
(2)
01

〉〈0〉 + 〈∂r C
( j−1)
0k

〉〈1〉 + 〈C( j−1)
1k C(2)

00

〉〈2〉
, (30)

C( j )
1k = C( j−1)

0k + 〈∂r C
( j−1)
1k + C( j−1)

1k C(2)
10

〉〈3〉
(31)

Here the following rules hold with respect to the indicated terms:

Term〈0〉 is omitted ifk = 0.
Term〈1〉 is omitted if j = 2k.
Term〈2〉 is omitted ifk = J0.
Terms〈3〉 are omitted if j = 2k+ 1.

The formulas (28)–(31) enable us to express any high-order radial derivative in terms of
high-order tangential derivatives and the first-order radial derivative.

Now, by substituting (28) into the original NRBC (17), we obtain

−∂u

∂r
= α0u+

K∑
j=2

α j

K0∑
k=0

(
C( j )

0k + C( j )
1k ∂r

)
∂2k
θ u onB, (32)

where

K0 =
{

K/2; K is even,

(K − 1)/2; K is odd.
(33)

In deriving (32), we exploit the fact thatJ1 ≤ J0 ≤ K0 for j ≤ K (see (29)) and defineC( j )
mk

to be zero for indices beyond their original ranges of definition. By exchanging the order
of the sums in (32), we then obtain

−∂u

∂r
= α0u+

K0∑
k=0

(γk + δk∂r )∂
2k
θ u onB, (34)

where

γk =
K∑

j=2

α j C
( j )
0k , δk =

K∑
j=2

α j C
( j )
1k . (35)

Finally, we denote

β0 = (α0+ γ0)/(1+ δ0), βk = (γk + δk∂r )/(1+ δ0). (36)

Then (34) becomes

−∂u

∂r
=

K0∑
k=0

βk∂
2k
θ u. (37)
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This NRBC has the familiar form (4), although here theβk are not constants but first-order
operators. The procedure outlined in Section 2.1 can be applied formally to (37) to yield
the symmetric AHOC (10.) The corresponding matricesY andZ are given by (11) and
(12), whereαk is replaced byβk andK is replaced byK0. From (36) it is clear that we can
decomposeY andZ as

Y = Y0+ Y1∂r , Z = Z0+ Z1∂r , (38)

whereY0,Y1,Z0, andZ1 are constant symmetric matrices. As a consequence, (10) becomes

−∂u

∂r
e1 = Y0U + Y1∂r U + Z0U′′ + Z1∂r U′′ onB, (39)

which is the desired symmetric AHOC.

2.4. NRBCs Involving Tangential and Radial Derivatives

If the initial sequence of NRBCs involves both tangential and radial high-order deriva-
tives, one can proceed in either of two ways:

1. Eliminate the radial derivatives appearing in the NRBC using the Helmholtz equation
recursively, as we have done in Section 2.3. Then use the procedure of Sections 2.1 and
2.2 to obtain a symmetric AHOC of either the form (39) (if only even-order tangential
derivatives appear in the original NRBC) or the form

−∂u

∂r
e1 = Y0U + Y1∂r U + Z0U′ + Z1∂r U′ onB. (40)

2. Define auxiliary variables associated withboth radial and tangential derivatives and
treat both types of derivatives according to the procedure of Section 2.1. The precise way to
do this will be explained in Section 4. The resulting two-level symmetric AHOC is analogous
to the one discussed in Section 4.1 for time-dependent problems (the time derivative∂t in
Section 4.1 being analogous to the radial derivative∂r here).

3. FINITE ELEMENT FORMULATION—THE ELLIPTIC CASE

Now we present the FE formulation for the problem inÄ consisting of the Helmholtz
equation (1), the boundary condition on the obstacle surface (2), and the symmetric AHOC
(10) on the artificial boundaryB. The unknown is the vectorU defined in (8); its entries are
u in Ä and the auxiliary variablesv j onB.

The weak form of the problem is findu ∈ H1(Ä) such that

a(w, u)+ b(w, u) = L(w), (41)

for anyw ∈ H1(Ä), where

a(w, u) =
∫
Ä

∇w ·∇u dÄ−
∫
Ä

wκ2u dÄ, (42)

b(w, u) = −
∫

B
w(∂u/∂r ) dB = · · ·?, (43)
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L(w) =
∫
0

wh d0. (44)

The expression forb(w, u) in (43) is still to be determined from (10). Now, we define the
weighting function vector as

WT = {w τ1 τ2 · · · τK−1}, (45)

where theτ j ∈ H1(B) are the weighting functions associated with the auxiliary unknowns
v j ∈ H1(B). Thus we have

b(w, u) = −
∫

B
ω(∂u/∂r ) dB = −

∫
B

W · e1(∂u/∂r ) dB

=
∫

B
W · (YU+ ZU′′) dB =

∫
B

W · YUdB −
∫

B
W′ · ZU′ dB. (46)

The one before last equality follows from (10), and the last equality is obtained by integration
by parts. Note thatb(·, ·) is a symmetricbilinear form. Thus, the weak form (41) can be
written in terms ofU andW as findU ∈ H1 such that for allW ∈ H1 there holds

â(W,U)+ b̂(W,U) = L̂(W), (47)

where

â(W,U) =
∫
Ä

∇W1 ·∇U1 dÄ−
∫
Ä

W1κ
2U1 dÄ, (48)

b̂(W,U) =
∫

B
W · YUdB −

∫
B

W′ · ZU′ dB, (49)

L̂(W) =
∫
0

W1h d0. (50)

The Galerkin FE method is used to find an approximate solution. In each element, the
functionsW(x) andU(x) are replaced by their finite-dimensional approximations

Wh(x) =
Nen∑
a=1

WaNa(x), Uh(x) =
Nen∑
a=1

daNa(x), (51)

whereNa(x) is the element shape function associated with nodea andNen is the number
of element nodes. Of course, similar expressions can also be written on the global level.
Note that the same shape functions,Na, are used in (51) for the variableu and for all of
the variablesv j . This is not a constraint of the method; in fact different shape functions
may be used for different variables without affecting the symmetry of the formulation,
although usually there is no need to do this. These approximations lead to the following FE
formulation:

(K̄ + K̃)d = F (52)

K̄ = ANel
e=1 k̄e

, K̃ = ANel
e=1 k̃

e
, F = ANel

e=1 f e, (53)

k̄e = [k̄e
(ai)(bj)

]
, k̃

e = [k̃e
(ai)(bj)

]
, f e = { f e

(ai)

}
, (54)
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k̄e
(ai)(bj) = δi 1δ j 1

∫
Äe

(∇Na ·∇Nb − Naκ
2Nb) dÄ, (55)

k̃e
(ai)(bj) =

∫
Be

(NaYi j Nb − N ′a Zi j N ′b) dB, (56)

f e
(ai) = δi 1

∫
0e

Nah d0. (57)

Here(ai) is the index associated with nodea and “degree of freedom”i (for i = 1, . . . , K ),
and similarly for(bj). Also, Nel is the number of elements,ANel

e=1 is the assembly operator,
δi j is the Kronecker delta, andÄe, Be, and0e denote, respectively, the part ofÄ,B, and0
associated with elemente. The FE formulation (52)–(57) isC0 andsymmetric, as desired.

The solution of (52) yields the vectord whose entries are the approximate nodal values
of U (see (51)). These nodal values include values ofu in the interior domainÄ as well as
values ofv j , namely, tangential derivatives ofu alongB. The latter may be of interest to
the analyzer; if not they should simply be ignored.

4. SYMMETRIC ARBITRARILY HIGH-ORDER CONDITIONS

FOR THE TIME-DEPENDENT CASE

Now we consider the time-dependent scalar wave equation governing in the plane outside
an obstacle:

ü = c2∇2u+ f. (58)

Here a dot indicates differentiation with respect to time,c is the wave speed, andf is a
given function with local support which is strictly contained in the finite domainÄ. On the
obstacle boundary0, a Neumann condition holds:

∂u

∂ν
= h on0. (59)

Initial conditions are given as well:

u = uI , u̇ = vI at t = 0. (60)

HereuI andvI are given functions with local support strictly contained inÄ. As before,
we introduce a circular artificial boundaryB with radiusR which enclosesÄ (see Fig. 1b).
OnB, an NRBC is applied, which is assumed to have the form (3). In the present case, the
operatorL K involves temporal and spatial derivatives.

4.1. NRBCs Involving Temporal and Even-Order Tangential Derivatives

We start with the case where the initial sequence of NRBCs involves temporal and
evenorder tangential derivatives. This is a generalization of the case considered in
Section 2.1. The(K , P)-order NRBC has the form

−∂u

∂r
=

K∑
j=0

P∑
l=0

α j l ∂
2 j
θ ∂

l
t u onB, (61)

where theα j l are real constants.
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As before, the idea is to introduce appropriate auxiliary variables to reduce the order of
the derivatives. The vector of variablesU is of lengthKP and is defined as

UT={u v10 · · · v(K−1)0 v01 v11 · · · v(K−1)1 · · · v0(P−1) · · · v(K−1)(P−1)
}
.

(62)

Here

vmn = ∂2m
θ ∂n

t u onB. (63)

Our goal is to replace the NRBC (61) and the relation (63) by an AHOC of the form

−∂u

∂r
e1 = SU+ RU′′ + PU̇ +QU̇

′′
, (64)

where all the arrays are of dimensionKP and all the four matrices aresymmetric. Unlike the
elliptic case, there are many ways to construct such matrices. We choose the construction
that is obtained by treating both types of derivatives analogously to the treatment of the
tangential derivatives in the elliptic case (Section 2.1). This is done in two steps. First we
“freeze” the time derivatives (or pretend that∂ l

t is a scalar constant) and reduce the order of
the tangential derivatives as in Section 2.1. This yields matricesY andZ (cf. (11) and (12)),
whose entries involve time-derivative operators. Then we reduce the time derivatives in
each matrix entry using again an analogous procedure. We omit the details of the derivation
and present the end result.

The matricesS,R,P, andQ are

S=



E0 0 0 . . . 0 0 0

0 −E2 −E3 . . . −EP−2 −EP−1 −EP

0 −E3 −E4 . . . −EP−1 −EP 0
...

...
...

...
...

...
...

0 −EP−2 −EP−1 −EP 0 . . . 0

0 −EP−1 −EP 0 0 . . . 0

0 −EP 0 0 0 . . . 0


, (65)

R is like S, but each blockE j is replaced byF j , (66)

P=



E1 E2 E3 . . . EP−2 EP−1 EP

E2 E3 E4 . . . EP−1 EP 0

E3 E4 E5 . . . EP 0 0
...

...
...

...
...

...
...

EP−2 EP−1 EP 0 0 . . . 0

EP−1 EP 0 0 0 . . . 0

EP 0 0 0 0 . . . 0


, (67)

Q is like P, but each blockE j is replaced byF j . (68)
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Each of the blocksE j andF j appearing above is aK × K matrix. They are given by

E j =



α0 j 0 0 . . . 0 0 0

0 −α2 j −α3 j . . . −α(K−2) j −α(K−1) j −αK j

0 −α3 j −α4 j . . . −α(K−1) j −αK j 0
...

...
...

...
...

...
...

0 −α(K−2) j −α(K−1) j −αK j 0 . . . 0

0 −α(K−1) j −αK j 0 0 . . . 0

0 −αK j 0 0 0 . . . 0


, (69)

F j =



α1 j α2 j α3 j . . . α(K−2) j α(K−1) j αK j

α2 j α3 j α4 j . . . α(K−1) j αK j 0

α3 j α4 j α5 j . . . αK j 0 0
...

...
...

...
...

...
...

α(K−2) j α(K−1) j αK j 0 0 . . . 0

α(K−1) j αK j 0 0 0 . . . 0

αK j 0 0 0 0 . . . 0


. (70)

The two-levelstructure of this construction is clear. Note the analogy betweenall these
matrices and the matricesY andZ (cf. (11) and (12)) in the elliptic case.

4.2. Other Cases

If the initial sequence of NRBCs involves time derivatives andboth even and oddtan-
gential derivatives, namely,

−∂u

∂r
=

K∑
j=0

P∑
l=0

α j l ∂
j
θ ∂

l
t u onB, (71)

then, although the FE formulation cannot be symmetrized, we employ a procedure analogous
to that of Section 4.1. This results in the symmetric AHOC

−∂u

∂r
e1 = SU+ RU′ + PU̇ +QU̇′, (72)

which is the same as (64) except that thefirst tangential derivative appears here instead of
the second. The matricesS, R, P, andQ remain the same as in Section 4.1.

If the initial sequence of NRBCs involves time derivatives andradial derivatives, namely,

−∂u

∂r
=

K∑
j=0

P∑
l=0

α j l ∂
j

r ∂
l
t u onB, (73)

then, as in Section 2.3, there are two ways to construct a symmetric AHOC. The first is to
treat ther -derivatives as theθ -derivatives have been treated above. Then, analogously to
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(72), the resulting symmetric AHOC is

−∂u

∂r
e1 = SU+ R∂r U + PU̇ +Q∂r U̇, (74)

with the same coefficient matrices as before. The second way is to use the wave equation (58)
recursively to replace the radial derivatives by (even-order) tangential and time derivatives
(the procedure being similar to the one discussed in Section 2.3). This reduces the given
NRBC to the form (61), but with theα j l involving the∂r operator. Hence the resulting
symmetric AHOC is of the form

−∂u

∂r
e1 = S000U + S001U̇ + S010U′′ + S100∂r U + S011U̇′′+S101∂r U̇

+S110∂r U′′ + S111∂r U̇′′. (75)

Finally, we consider the case where the initial sequence of NRBCs involvesall types of
derivatives—temporal, tangential, and radial:

−∂u

∂r
=

K∑
j=0

M∑
m=0

P∑
l=0

α jml∂
j
θ ∂

m
r ∂

l
t u onB. (76)

Thus there are again two avenues for symmetric AHOC construction. First, one may treat
each type of derivativeseparatelyas in Section 2.1. This leads to athree-levelextension of
the two-level construction in Section 4.1 and yields a symmetric AHOC of the form

−∂u

∂r
e1 = S000U + S001U̇ + S010U′ + S100∂r U + S011U̇′ + S101∂r U̇

+S110∂r U′ + S111∂r U̇′. (77)

Here, the matricesSjkl are of dimensionK M P. They have the same structure as the matrices
SandP in (65) and (67). Each block in these matrices has again the same structure, which
in turn contains smaller subblocks. Each such subblock has yet again the same structure but
now containing scalars for entries, as in (69) and (70).

Second, one may eliminate the radial derivatives by using the wave equation (58) to
reduce the given NRBC to the form (71), which in turn leads to the symmetric AHOC (72)
but with coefficients involving the operator∂r . Written differently, this AHOC again has
the form (77).

5. FINITE ELEMENT FORMULATION—THE TIME-DEPENDENT CASE

Now we present the semidiscrete FE formulation for the problem inÄ consisting of the
wave equation (58), the boundary condition on the obstacle surface (59), the symmetric
AHOC (64) on the artificial boundaryB, and the initial conditions (60).

As in the elliptic case, a weak form of the problem can be written in terms of the unknown
vectorU and the weighting vectorW (cf. (47)). The problem is then discretized in space
using the Galerkin FE method. In each element, the functionsW(x) andU(x, t) are replaced



864 DAN GIVOLI

by their finite-dimensional approximations

Wh(x) =
Nen∑
a=1

WaNa(x), Uh(x, t) =
Nen∑
a=1

da(t)Na(x). (78)

As in the elliptic case, the fact that the same shape functionsNa are used here for the variable
u and for all the variablesv j is a matter of choice and not a constraint of the method. These
approximations lead to the following FE linear dynamic system:

Md̈(t)+ Cḋ(t)+ Kd(t) = F(t). (79)

This system is accompanied by appropriate initial conditions. The vector of initial values
is easily obtained: it depends solely on the given functionsuI andvI (see (60)) since all
the auxiliary variablesvmn are defined alongB only and thus, according to our assumption,
vanish identically at timet = 0. The dynamic system (79) may be solved by a standard
time-integration method, such as one of the Newmark family of schemes.

The expressions for the matrices and vectors appearing in (79) are

M = ANel
e=1 me, C= ANel

e=1 ce, K = ANel
e=1 ke, F = ANel

e=1 f e, (80)

me = [me
(ai)(bj)

]
, ce = [ce

(ai)(bj)

]
, ke = [ke

(ai)(bj)

]
, f e = [ f e

(ai)

]
, (81)

me
(ai)(bj) = δi 1δ j 1

∫
Äe

NaNb dÄ, (82)

ce
(ai)(bj) = c2

∫
Be

(Na Pi j Nb − N ′aQi j N ′b) dB, (83)

ke
(ai)(bj) = δi 1δ j 1c2

∫
Äe

∇Na ·∇Nb dÄ+ c2
∫

Be

(NaSi j Nb − N ′a Ri j N ′b) dB, (84)

f e
(ai) = δi 1

∫
Äe

Na f dÄ+ δi 1

∫
0e

Nah d0. (85)

The matricesS,R,P,Q are those given in (65)–(68). Note thedampingtermCḋ in (79),
which originates only from the AHOC (64) onB (the original problem having no physical
damping associated with it). Note also the symmetry of the element-level FE matrices
me, ce, andke, which implies the symmetry of the global-level matricesM,C, andK in (79).

6. NUMERICAL EXPERIMENTS

Now we present the results of some numerical experiments for the case oftime-harmonic
waves(Sections 2 and 3), with the symmetric AHOCs onB, which are obtained from the
localized DtN conditions[8, 9]. The latter NRBCs have the form (4) and thus lead to the
AHOC (10). Preliminary results are reported in [21]. See [8] and [9] for details on how
the coefficientsα j in (4) (and (10)) are defined. These two papers reach the same expression
for α j in two different ways: in [8] a local NRBC is constructed which exactly annihilates
the firstK cylindrical modes of the reflected wave, while in [9] the local NRBC of order
K is found which is closest to the exact DtN condition in theL2 norm. The latter approach
leads to a two-parameter family of NRBCs, and when the two parameters coincide one
obtains the localized DtN conditions.
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FIG. 2. Finite element mesh for the radiator problem.

In [8] these NRBCs were implemented and tested in their original form, namely, with
high-order derivatives appearing explicitly in the FE formulation. To enable this, special
FEs with high-order regularity were used in the layer adjacent toB. This procedure was
associated with two difficulties: (a) the NRBC orderK could not be taken to be very large,
because the programming of the special high-order FEs became too complex; (b) the even-
order NRBCs turned out to be unstable. The latter fact has been theoretically verified in
[8, 22]. Thus, only the odd-order localized DtN conditions are usable in their original form.

We consider a circular radiator of radiusa = 0.5 in an infinite plane. Time-harmonic
waves are propagated from the radiator’s boundary0, with wave numberκ = 1. On0 we
prescribe the values cosj θ , where j ranges from 0 (uniform radiation) to 5. We introduce
a circular artificial boundaryB of radiusR= 1 around the radiator (see Fig. 1b). Thus the
computational domainÄ is the annulusa ≤ r ≤ R. OnB we apply the symmetric AHOC
(10) which is obtained from the sequence of localized DtN conditions. Figure 2 shows the
FE mesh, where bilinear quadrilateral elements are employed throughout. This means that
bilinear shape functions are used foru inÄ and linear shape functions are used onB for all
the auxiliary variablesv j .

Table I compares the exact solution with the FE solution obtained for different AHOC-
ordersK and for different radiation harmonicsj . The value shown in all cases is the real part
of the solutionu atr = Randθ = 0. Naturally, all approximate solutions deteriorate whenj
becomes larger, since then the solution becomes more oscillatory while the mesh resolution
remains the same. For a fixed value ofj , the smallest error is obtained forK = j . Increasing
K further does not improve the result. ForK ≥ j , the error associated with truncating the

TABLE I

Real Part of Solutionu at r = R and θ = 0

j Exact K = 1 K = 2 K = 3 K = 4 K = 5

0 0.630 0.632 0.632 0.632 0.632 0.632
1 0.565 0.568 0.568 0.568 0.568 0.568
2 0.303 0.322 0.303 0.303 0.304 0.304
3 0.138 0.132 0.115 0.134 0.134 0.134
4 0.067 0.049 0.037 0.102 0.059 0.059
5 0.033 0.017 0.009 −0.019 0.010 0.026
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TABLE II

Computational Parameters for Different NRBC Orders

Property K = 1 K = 2 K = 3 K = 4 K = 5

Number of DOFs 120 160 200 240 280
Condition number 46.3 103.8 191.3 374.9 537.2
Relative CPU time 1.0 2.0 3.4 6.1 10.0

infinite domain is in fact zero. The error which remains is the FE discretization error and is
not related to the NRBC. This error is about 0.3% forj = 0 (uniform radiation) and about
23% for j = 5.

Table II shows the total number of degrees of freedom, the condition number, and the
relative CPU time for the different NRBC ordersK . All of these computational parameters
are monotonely increasing functions ofK . Note the very low condition numbers obtained.
In [8] , for the localized DtN conditions in their original high-derivative form, the condition
numbers observed were orders of magnitude larger. Note also thatK = 5 corresponds to
an NRBC which involves a tangential derivative of order 10 (cf. (4)). With a standard
FE formulation (i.e., with no auxiliary variables) this would requireC4 continuity along
B, which is very hard to achieve in practice. However, in the AHOC method,K can be
increased very easily to any desired large value, since it is simply an input parameter.

One may wonder how the condition number grows asK becomes very large, e.g., with
K = 100, which may be needed for extremely oscillatory solutions. The answer is that for
such short waves a very fine mesh is needed, which would result in a high condition number
regardless of the boundary condition used onB. In fact, we have numerical evidence which
shows that with fine resolution the density of the mesh is the dominant factor in determining
the condition number, and that if we ignore the accuracy aspects and use a coarse mesh, the
condition number forK = 100 would be about 50,000. This is still not regarded as a very
large condition number. Thus, the boundary condition does not render the scheme more

FIG. 3. Boundary condition on0. This is the fifth-order polynomialg(θ) = 0.4− 24.02θ + 31.25θ2 −
13.70θ3 + 2.47θ4 − 0.16θ5 which has 2π -periodicity in both the function and its first derivative.
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FIG. 4. Imaginary part of the solution onB. Comparison of the exact solution, the first-order AHOC, and the
fifth-order AHOC.

unstable than it already is due to the fine interior discretization. Detailed numerical results
for problems with highly oscillatory solutions will be presented in a future publication.

The example just considered is degenerate in the sense that the exact solution is a single
cylindrical mode. Now we consider another problem where the exact solution involves an
infinite number of modes. To this end, we replace the boundary condition on the radiator
surface0 by the fifth-order periodic polynomial shown in Fig. 3. The imaginary part of
the solution onB is shown in Fig. 4. Three solutions are compared in the figure: the exact
solution and the numerical solutions obtained with the AHOCs of orders 1 and 5. As seen
in the figure, theK = 5 solution is not distinguishable from the exact solution.

We observe from the numerical results that the AHOC isstable for all orders K. As
mentioned previously, this is opposed to the situation occurring when the localized DtN
conditions are used directly in the form (4) [8, 22]. Thus, in addition to all other advantages,
the derivative-order reduction performed in the AHOC method has a stabilizing effect. This
also demonstrates the known fact that one has to be careful when referring to the stability
of a certain NRBC; stability is not a property of the NRBC alone, but a property of the
NRBC, the method of its discretization, and the interior scheme combined.

7. CONCLUDING REMARKS

In this paper we have shown how to construct a local boundary condition of an arbitrarily
high order with a symmetric structure, which is equivalent to a given high-order NRBC but
does not involve any high-order derivatives. Such AHOCs, if incorporated in a numerical
code, allow very easy accuracy control: to increase accuracy the user has only to increase
the order of the AHOC which is simply an input parameter of the code. In this respect,
symmetric AHOCs (which are local) are very similar to nonlocal NRBCs. Moreover, as
discussed in the Introduction, if the truncation error associated with the AHOC of orderK
vanishes asK →∞, it is justified to think of the AHOC asexactjust as the nonlocal DtN
condition is regarded as exact.
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We have numerically demonstrated the performance of one example of symmetric
AHOCs, namely, those obtained from the localized DtN conditions, in the case of time-
harmonic waves. In this case, the symmetric AHOCs lead to a symmetricC0 FE scheme
which is local, stable for all ordersK , very accurate (as far as the truncation of the infinite
domain is concerned), efficient, easy to implement, well-conditioned, and allows the use of
standard element shape functions for all the variables. With regard to stability, it turns out
in the case considered numerically that the symmetric AHOC, with low-order derivatives
and auxiliary variables, is more stable than the original NRBC, with only one variable but
with high-order derivatives.

Implementation of the AHOCs in the time-dependent case is under way. Results will be
reported in a future publication. Theoretical stability analysis and error estimates for the
AHOC form of the localized DtN conditions and of other sequences of NRBCs are also to
be investigated.

APPENDIX: DERIVATION OF Y AND Z IN THE ELLIPTIC CASE

We consider theK -dimensional system of equations (7) or (9), i.e.,

−∂u

∂r
e1 = AU + BU′′ onB, (A.1)

which constitutes a nonsymmetric AHOC. Heree1 is a K -vector whose first entry is one
and all other entries are zero. We construct an equivalent AHOC of the form (10); i.e.,

−∂u

∂r
e1 = YU+ ZU′′ onB, (A.2)

where the matricesY andZ are symmetric.
To solve this problem we rephrase it as a problem in linear algebra:Given the linear

system of equations

Ax+ By= se1, (A.3)

where s is a scalar andA and B are the matrices defined by (7), obtain, by applying
elementary operations on the matrices, a new linear system of equations,

Yx+ Zy= se1, (A.4)

whereY andZ are symmetric.We shall show now how to deriveY andZ, and in doing so
we shall prove that the construction is unique.

First, we recall from linear algebra that a matrixY is obtained from a matrixA by
elementary operations iffY = QA for some nonsingular matrixQ. Thus, we multiply the
original system (A.3) byQ on the left, which yields

QAx+QBy= sQe1. (A.5)

This should yield (A.4); henceY = QAandZ = QBare symmetric, and we haveQe1 = e1,
which means that the first column ofQ is e1. Now, we write the matricesA, B, andQ in the
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following partitioned form:

A =
[
α0 aT

0 I

]
, B =

[
0 bT

e F

]
, Q=

[
1 qT

0 T

]
, (A.6)

where

aT = {α1 α2 · · · αK−1}, bT = {0 0 · · · αK }, (A.7)

e= −e1, F = −[e2 e3 · · · eK−1 0
]
. (A.8)

In (A.6)–(A.8), I is the(K − 1)× (K − 1) identity matrix,ej is a vector with zero entries
except a unit entry in thej th position,q is a (K − 1)-vector, andT is a (K − 1)-matrix.
From this we calculate

Y = QA=
[
α0 aT + qT

0 T

]
, Z = QB=

[
−q1 bT + qTF

−Te1 TF

]
. (A.9)

From the symmetry ofY we immediately deduce thatT is symmetric and thatq= −a.
Using the latter equality as well as (A.7) and (A.8) in the expression forZ in (A.9) yields

Z =


α1 α2 · · · αK−1 αK

0

−T
...

0

 . (A.10)

Thus, we have recovered the first row and first column in the matrixZ (cf. (12)). We now
use the facts thatZ given by (A.10) should be symmetric and thatT itself should also be
symmetric, and continue in this fashion recursively, to deduce finally thatY andZ must be
the matrices given by (11) and (12). Since there was no freedom in the deduction process
above, the construction is proved to be unique.
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