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Awave problemin an unbounded domainis often treated numerically by truncating
the infinite domain via an artificial boundafy; imposing a so-called nonreflecting
boundary condition (NRBC) o8, and then solving the problem numerically in the
finite domain bounded b#. A general approach is devised here to construct high-
order local NRBCs with a symmetric structure and with only low (first- or second-)
order spatial and/or temporal derivatives. This enables the practical use of NRBCs
of arbitrarily high order. In the case of time-harmonic waves with finite element dis-
cretization, the approach yields a symme@ftfinite element formulation in which
standard elements can be employed. The general methodology is presented for both
the time-harmonic case (Helmholtz equation) and the time-dependent case (the wave
equation) and is demonstrated numerically in the former cagez001 Academic Press

Key Wordswaves; high-order; artificial boundary; nonreflecting boundary condi-
tion; finite element.

1. INTRODUCTION

A common method used for the numerical solution of wave problems in an unbounc
domain [1] is based on truncating the domain via an artificial bounBatiius forming a
finite computational domaif2 bounded by5. A so-called nonreflecting boundary condition
(NRBC) isimposed o to complete the statement of the problem (i.e., to make the solutic
unique) and, most importantly, to ensure that no (or little) spurious wave reflection occ
from B. Then the problem is solved numericallySn(see Fig. 1). Naturally, the quality of
the numerical solution strongly depends on the properties of the NRBC employed. In
past two decades, much research has been done to develop NRBCs that after discreti:
lead to a scheme which is stable, accurate, efficient, and easy to implement; see [2] an
for recent reviews on the subject. Of course, it is difficult to find a single NRBC which
ideal in all respects and all cases; this is why the quest for better NRBCs and their assoc
discretization schemes continues.
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FIG.1. Setup forthe method of NRBCs. The artificial boundB&ryuncates the infinite domain, thus forming
a finite computational domaif2. A nonreflecting boundary condition (NRBC) is applied8nand the problem
in Q is solved numerically. (a) Wave guide configuration. (b) Exterior problem configuration.

The collection of NRBCs that have been proposed can be divided into twansels:
cal andlocal NRBCs. Nonlocal NRBCs, the main example of which is the Dirichlet-to.
Neumann (DtN) condition [1-3], are typically exact (or exact up to a series truncation er
which can be made vanishingly small), whereas local NRBCs are usually approximate. \
ious sequences of local NRBCs with increasing order of accuracy have been devised,
the sequences of Engquist and Majda [4], Bayliss and Turkel [5], Feng [6], Higdon [7], a
Givoli et al.[8, 9]. The Engquist-Majda NRBCs are based on approximating the symk
of the governing pseudo-differential operator by rational functions, the Bayliss—Turkel a
Feng NRBCs are two types of asymptotic conditions, the Higdon NRBCs annihilate we
reflection in a finite number of specified directions, and the NRBCs of Gatodil. are
obtained by localizing the exact nonlocal DtN condition in some “optimal” way.

A detailed comparison of the properties of nonlocal and local NRBCs appears in [
The nonlocal DtN condition is robust, very accurate, stable, and, in the context of the fir
element (FE) method, leads to a well-conditioned symmetric matrix problem. However
may involve special functions that are not convenient to compute, it must be used or
artificial boundarys of a simple smooth shape, and it often affects negatively the sparsen
of the coefficient matrix in the discrete scheme (e.g., the FE stiffness matrix). It should
noted, however, that in the elliptic case some strong arguments may be made to show
these relative disadvantages may be overcome or that they are not really as negative a
may think [3, 10]. A more serious difficulty is that in some important cases an expressi
for the exact DtN condition is not available or is too complicated to be practical.

Local NRBCs can be used in principle on a generally shaped bouttiang are com-
patible with local FE architecture (where all operations are performed on the element lev
However,low-order local NRBCs may have low accuracy (at least in some cases, whi
always exist), whereakigh-order local NRBCs are usually hard to implement becaus
they typically involve high-order derivative€learly, standar€® FEs cannot be used in
the presence of high-ordéaingentialderivatives. Even if the NRBC involves only high
normal derivatives, this requires the use of high-order FE interpolation, with associat
difficulties. The appearance of high-ordemporalderivatives is also problematic from a
numerical time-integration standpoint. In addition, most high-order NRBCs, if used in
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straightforward manner, lead to a nonsymmetric and ill-conditioned FE scheme. Sim
difficulties exist with other discretization methods, such as finite differences. Until recen
a very-highorder local NRBC has never been used because of these reasons. The |
popular NRBCs are first- and second-order conditions, which are easy to implement
not always sufficiently accurate. Rarely has an NRBC involving a third- or a fourth-ord
derivative been used.

One approach in the context of FEs to deal with high-order tangential derivatives t
occur in an NRBC is to develop and use special FEs that possess high-order regul
on B. A hierarchy of such two-dimensional elements was first introduced in [11], and th
extended in [12] to three dimensions and in [8ptdype elements. The latter paper includes
calculations done with a local NRBC involving a sixth-order tangential derivative. Whi
it is possible in principle to use this approach with a very high-order NRBC, this is not
practical since the coding of the special elements is difficult, and moreover each eleme
the hierarchy must be coded separately.

Recently, some new sequences of local high-order NRBCslthaot involve high-order
derivativesat all have been proposed by several researchers. Instead, these NRBCs in\
auxiliary variablesdefined or5. Thus, the differential order of the NRBC is reduced at the
price of increasing the number of unknowns in the problem. If the construction is expli
enough, it can be coded once and for all and thus allows the practical use of an NRB(
anarbitrarily high order. We therefore call such NRBC an arbitrarily high-order conditio
(AHOC).

The first AHOC was apparently devised by Collino [13] for two-dimensional time
dependent waves in rectangular domains. Its construction requires the solution of the
dimensional wave equation df. Grote and Keller [14, 15] proposed an AHOC for the
three-dimensional time-dependent wave equation based on spherical harmonic tran
mations. They extended this AHOC for the case of elastic waves in [16]. Hagstrom ¢
Hariharan[17, 18] constructed an AHOC for the two- and three-dimensional time-depenc
wave equations based on the analytic series representation for the outgoing solutions of1
equations. It looks simpler than the previous two AHOCS. For time-dependent waves |
two-dimensional wave guide, Guddati and Tassoulas [19, 20] devised an AHOC by rewrit
the Engquist—Majda sequence and the Higdon sequence of NRBCs as a recursive conti
fraction.

We comment on thexactnessf AHOCs. One measure, on the continuous level, of hov
accurately a given NRBC solves a specific problem is as follows. One considers the e
solution of two problems: the first is the original problem in the infinite domain, and tt
second is the problem in the truncated donfjmvith the given NRBC applied ofi. Thus
the distances, in some reasonable norm, between the two solutior® may serve as
an error measure. Now, if an AHOC of ordkr has the property that its error measdre
approaches zero &goes to infinity while is held fixed, and if this property holds fany
given wave problem of a class under consideration, then it seems justified to call the AH
exact In this sense, the Grote—Keller AHOC, the three-dimensional Hagstrom—Hariha
AHOC, and the AHOC based on the localized DtN conditions (see Section 6) are all ex:
Note that according to our definition, the convergence property of the NRBC-as oo
is not sufficient to merit the title “exact”; the NRBC must also be an AHOC—that is, b
implementable for an arbitrarily largeé.

In the present paper we present a systematic way to reformulate any given sequen
NRBCs as an AHOC. In other words, for a given sequence of NRBCs involving spat
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and/or temporal derivatives of increasing order, we construct another sequence of ec
alent NRBCs with only low (first- or second-) order derivatives. We do this both in th
time-harmonic case (Helmholtz equation) and in the time-dependent case (wave equat
Interestingly, the time-harmonic case has not been treated in this context so far. Thus,
is the first AHOC proposed for the Helmholtz equation.

One important property that the proposed AHOC possesses is that itdyasnaetric
structure. Thus, if the original problem is self-adjoint, the truncated problem with tt
proposed AHOC orB is also self-adjoint and hence leads to a symmetric problem c
the discrete level. In the elliptic (time-harmonic) case, there imigueway to obtain
such a symmetric AHOC. Therefore we shall cathié symmetric AHOQConsidering FE
discretization, this symmetry is important for three reasons:

1. Itis theoretically satisfying that the original self-adjoint problem (in an unbounde
domain) is replaced by a self-adjoint problem (in a finite domain). This would not be tl
case without the symmetry property of the AHOC.

2. Onthe discrete level, this property ensures that the NRBC does not spoil the symm
of the FE formulation and thus allows the use of standard symmetric solvers, which
more efficient than nonsymmetric solvers in computer storage and number of floating-pt
operations.

3. As will be demonstrated numerically later, the symmetric AHOC is also more stat
than the original NRBC.

For the case of the Helmholtz equation, the symmetric AHOC leads to a symi@&tric
FE formulation, which enables the use of standard FEs. For the time-dependent cas
construct an analogous AHOC, which leads, after discretization in space, to a symme
system of linear ordinary differential equations of a standard form.

Following is the outline of the paper. In Section 2 we show how to construct the symmet
AHOC for the Helmholtz equation, given an initial sequence of NRBCs of increasing ord
We discuss various forms of the initial sequence, involving either tangential derivativ
or normal derivatives or both. In Section 3 we discuss the FE formulation for the ne
problem in€2 involving the symmetric AHOC applied of. In Section 4 we extend the
construction of the symmetric AHOC to the time-dependent case, and in Section 5
discuss the corresponding FE semidiscrete formulation. All this is done for a general ini
sequence of NRBCs. In Section 6 we present the results of some numerical experiment
the time-harmonic case using the localized DtN conditions [8, 9] as the initial sequen
We draw conclusions regarding the effectiveness of the symmetric AHOC. We conclt
with some remarks in Section 7.

2. SYMMETRIC ARBITRARILY HIGH-ORDER CONDITIONS
FOR THE HELMHOLTZ EQUATION

We shall present the proposed methodologiia dimensionand inpolar coordinates
The configuration is illustrated in Fig. 1b. However, other cases, such as three-dimensi
and wave-guide configurations, may be treated similarly.

We consider the Helmholtz equation in the plane outside of an obstacle:

V2u+«?u=0. (1)
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Herex is the wavenumber. Some boundary condition is given on the obstacle boutidar
to fix ideas we consider the Neumann condition

du =h onT, (2)
av

wheredu/dv is the normal derivative af onT" andh is a given function. At infinity, the
Sommerfeld radiation condition holds, which dictates that waves are outgoing there.
introduce a circular artificial boundaty of radiusR, which encloses a finite computational
domaing2 (see Fig. 1b). We use the polar coordinate system) (whose origin is located
such thats is the circler = R.

On B, an NRBC is applied, as discussed in the Introduction. All sequences of lot
NRBCs mentioned previously have the form (or can be written in the form)

ou
—— =1L onp, 3
o ku (3)

whereL ¢ is a differential operator, and the ind&x= 0, 1, 2, .. . is the order of the NRBC.
This form is compatible with FE formulations, since variationally (3) can be treated a:
natural boundary condition. We concentrate here on NRBCs of this form.

We begin with the case whetg, involves onlytangential(¢ —) derivatives okvenorder.
We consider the case whavddorders appear as well. Then we turn to the case whegre
involves onlyradial derivatives. Finally, we address the general case wihattetangential
and radialderivatives appear ibg .

2.1. NRBCs Involving Even-Order Tangential Derivatives

We consider NRBCs that involve only tangential derivatives of even order. Such NRB
have the form

K
——=>a;37u onB, (4)

where thex; are given complex constants (that usually depenéKemd R). The NRBC
(4) is particularly attractive because it leads to a symmetric variational formulation. T
Feng NRBCs [6] and the localized DtN conditions [8, 9] have this form.

Our goal is to rewrite (4) in a way that does not involve high-order derivatives. To th
end, we introduce auxiliary variables defined$ni.e.,

Vo = U, (5)
vj=v/,=09'u j=1...K onB. 6)

Here and elsewhere a prime indicates differentiation with respegt ithe NRBC (4)
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together with these relations can be written in a matrix form as

—3U/8I’ _O!o o1 02 ... OK-2 OfK—l_ u
0 O 1 0 ... 0 0 v1
o ( |oo1.. 0 o0 v2
0 0O 0 0 . 1 0 VUK -2
0 |0 0 0 . 0 1 | Lk
0 0 . 0 0 k] u "
-1 0 . 0O 0 O V1
0 -1... 0 0 0 V2
T : : : : : : : (7
o o0 ... -1 0 O VK —2
L0 0 ... 0 =1 0] (v~

This is a linear system dk equations and unknowns (d#). To write this system more
concisely, we define the vector of auxiliary variables as

U'={u v v - wvk-1), (8)

where the superscrift indicates transposition. We also lgtbe a vector (of dimension
K) whose first entry is one and all other entries are zero. Thus (7) can be written as
au p
—a—releUJrBU onB. (9)
Here, A and B are the matrices appearing in (7). Since (9) involves only second-ord
derivatives, it is an AHOC according to our definition. However, (9) is not a desirab
AHOC because the matricédsandB arenonsymmetricand therefore it would lead to a
nonsymmetric FE formulation. The question is, thus, whether it is possible to replace
by the equivalent AHOC
au Yy
—a—releU+ZU on B, (20)
where the matrice¥ andZ aresymmetricThe answer is positive. In fact, it can be shown,
using some simple matrix-theoretical arguments, that therarageiesymmetric matrices
Y andZ such that (10) implies (9). (see the Appendix for the proof of the uniqueness of t
construction). These matrices are

[ 0 0 0 0 0
0 —as —u3 ce. —OK_2 —OK_1 —OK
0 —3 —04 e —OK -1 —OK 0
Y=|: ; ; : : : Co (11)
0 —U0K—-2 —0Ok-1 —0OK 0 0
0 —0K -1 —OK 0 0 . 0
0 —ax 0 0 0 0 |




HIGH-ORDER NONREFLECTING BOUNDARY CONDITIONS 855

(051 (0% o3 ... OK-2 0Ok-1 OK
o o3 04 ... OK_1 Ok 0
o3 o4 o5 ... O 0 0
Z=| ¢ i n (12)
OK—2 0OK-1 OK 0 0 0
K -1 aK 0 0 0 0
ok O 0 0 0 ... 0]

It is easy to verify that the symmetric linear system (10) with the matiVcasdZ given by
(11) and (12), is indeed equivalent to the original linear system (7). In fact, the equati
of the former are simply linear combinations of the equations of the latter. Equation (10
the desired symmetric AHOC.

2.2. NRBCs Involving Even and Odd Tangential Derivatives
Now suppose that (4) is replaced by

K
au i
_§=§ ajdju onB. (13)
j=0

In other words, suppose the initial sequence of NRBCs involves both even and odd tange
derivatives. Such an NRBC cannot lead to a symmetric FE formulation, but it can still
treated analogously to the previous case. In fact, all the equations of Section 2.1 are
valid, except that the second-order tangential derivative is replaced by a first-order derive
everywhere. Thus, the auxiliary variables are defined as

Vo = U, (14)
vy =v,_,=0du, j=1..,K onB, (15)

and the symmetric AHOC is (cf. (10))

au
geleU-l-ZU/ onB. (16)

The matricesr andZ are the same as in (11) and (12).

2.3. NRBCs Involving Radial Derivatives

Now we consider the case where ordylial derivatives appear in the initial sequence of
NRBCs. Such NRBCs have the form

K
ou -
—5r = ou+ > "ajdlu onB. 17)

=2

The Bayliss—Turkel [5] and the Higdon [7] NRBCs can be written in this form.
There are two ways to construct a symmetric AHOC for (17). The first is to mimic wh
has been done in the case of tangential derivatives. Thus, the auxiliary variables are de
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similarly to (14) and (15), but the derivatives are now radial:

Vg = U, (18)
vj =dvj_1=3dlu, j=1,...,K onB. (19)

Consequently, the symmetric AHOC is (cf. (16))

—g—lrjelethzarU onks. (20)
Another difference from the previous case is that kgre- 0 (from (17)). The matrice¥
andZ in (20) are again the same as in (11) and (12), With= 0 in the present case.

The second way to obtain a symmetric AHOC for the NRBC (17) is to first replac
the radial derivatives by tangential derivatives and then to construct the symmetric AH(
associated with the resulting NRBC in the manner described in Section 2.1. The replacer
of r-derivatives by-derivatives is done by the recursive use of the Helmholtz equation (1
which is assumed to hold alori§y and insideS2. Now we give the details of how this is
done.

In polar coordinates, (1) becomes

32u + r}aru+ rizagﬂzu =0. (21)
Thus, we have
92u = C2(ru+C@r)au+ C&(r)o?u, (22)
whereC{ = —«2,C\2 = —1/r, andCézl) = —1/(r?). The explanation for the notation is

as follows: C“k is the coefficient ot)ma u appearing in the expression fgtu. The third
radial derivative can be expressed in terms of tangential derivatives by differentiating (
with respect to and then eliminating2u by using (22) again. The end result has the forrr

3% =CPu+CP ) u+CSr)a2u+Ci(r)s a2u, (23)

3

where the coefficient§>, can be expressed in terms of the coefficied|fs; i.e.,

c¥ =4l +cac, (24)
Ci?)) — C(z) n arC<2) (C(Z)) ’ (25)
cy =pC+CIcsd, (26)
Ciy = Cqr. (27)

In general, the expression for théh radial derivative (forj > 2) can be reduced to the
form

L
= (el + e i 29
k=0 k=0
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where
i/2; j even j —2)/2; jeven
%:{gibm;;iﬁ"32{8—5221;2' #)
General recursive formulas for the coefficieﬁ]%& are (forj > 3)
Cll = (CUACE)™ + (aCd ™)™ + (clMe@) ™, (30
c =cCg + (acil Y + e P eE)? (31)

Here the following rules hold with respect to the indicated terms:

Term(0) is omitted ifk = 0.

Term (1) is omitted if ] = 2k.
Term(2) is omitted ifk = Jo.
Terms(3) are omitted ifj = 2k + 1.

The formulas (28)—(31) enable us to express any high-order radial derivative in term:
high-order tangential derivatives and the first-order radial derivative.
Now, by substituting (28) into the original NRBC (17), we obtain

K Ko
ou (
—op =wut )y (c +ca)su onB, (32)
j=2 k=0
where
K/2; K is even
0= . (33)
(K =-1)/2; Kisodd

In deriving (32), we exploit the factthdi < Jy < Kpfor j < K (see (29)) and defir@,ﬂj,ﬁ
to be zero for indices beyond their original ranges of definition. By exchanging the or
of the sums in (32), we then obtain

Ko

au
—— =aU+ Y (A+ &)U onB, (34)
ar e
where
K .
ne=Y a;C. Zajc(” (35)
j=2
Finally, we denote
Bo= (o +y0)/(L+30),  Bx= (¥ + kdr)/(1+ o). (36)

Then (34) becomes

———Zma. (37)
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This NRBC has the familiar form (4), although here fheare not constants but first-order
operators. The procedure outlined in Section 2.1 can be applied formally to (37) to yi
the symmetric AHOC (10.) The corresponding matrideandZ are given by (11) and
(12), wherex is replaced bysx andK is replaced byKq. From (36) it is clear that we can
decompos®& andZ as

Y =Yoo+ Y10, Z =20+ 210, (38)

whereYy, Y1, Zg, andZ; are constant symmetric matrices. As a consequence, (10) becon

au
—gel =YoU + Y10, U +ZoU" +Z10,U” onB, (39)

which is the desired symmetric AHOC.

2.4. NRBCs Involving Tangential and Radial Derivatives

If the initial sequence of NRBCs involves both tangential and radial high-order deriv
tives, one can proceed in either of two ways:

1. Eliminate the radial derivatives appearing in the NRBC using the Helmholtz equati
recursively, as we have done in Section 2.3. Then use the procedure of Sections 2.1
2.2 to obtain a symmetric AHOC of either the form (39) (if only even-order tangenti
derivatives appear in the original NRBC) or the form

—g—lrjel =YoU + Y16;U + ZoU' + Z15, U onB. (40)

2. Define auxiliary variables associated withth radial and tangential derivatives and
treat both types of derivatives according to the procedure of Section 2.1. The precise we
dothis will be explained in Section 4. The resulting two-level symmetric AHOC is analogol
to the one discussed in Section 4.1 for time-dependent problems (the time derdyative
Section 4.1 being analogous to the radial derivaijvleere).

3. FINITE ELEMENT FORMULATION—THE ELLIPTIC CASE

Now we present the FE formulation for the problemtinconsisting of the Helmholtz
equation (1), the boundary condition on the obstacle surface (2), and the symmetric AH
(10) on the artificial boundar$. The unknown is the vectas defined in (8); its entries are
uin  and the auxiliary variables; on B.

The weak form of the problem is find € H($2) such that

a(w, u) + b(w, u) = L(w), (42)

foranyw € H1(Q), where
a(w, u) = / Vw-VudQ — / wic?u dQ, (42)
Q Q

b(w, u) = —/ w(@u/drdB = -- -2, (43)
B
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L(w) = / whdrl. (44)
r

The expression fob(w, u) in (43) is still to be determined from (10). Now, we define the
weighting function vector as

Wi={w o © - tk-1h, (45)

where therj € H1(B) are the weighting functions associated with the auxiliary unknown
vj € HY(B). Thus we have

b(w,u) = —/w(au/ar)de—/W-el(au/ar)db’
B B
:/W~(YU+ZU”)dB=/W~YUdB—/W’-ZU’dB. (46)
B B B

The one before last equality follows from (10), and the last equality is obtained by integrat
by parts. Note thab(-, -) is asymmetrichilinear form. Thus, the weak form (41) can be
written in terms ofU andW as findU e H? such that for alwW € H? there holds

a(Ww, U) + b(w, Uy = L(w), (47)
where
aw, U):/QVW1~VU1dQ—/QW1K2U1dQ, (48)
bW, U) :/BW~YUdB—/BW/-ZU/dB, (49)
Low) = /r Wihdr. (50)

The Galerkin FE method is used to find an approximate solution. In each element,
functionsW(x) andU(x) are replaced by their finite-dimensional approximations

Nen Nen
W0 =D WaNa(0),  U"00 = daNa(), (51)
a=1 a=1

whereN; (X) is the element shape function associated with reodad Nep, is the number
of element nodes. Of course, similar expressions can also be written on the global le
Note that the same shape functioh, are used in (51) for the variableand for all of
the variablesyj. This is not a constraint of the methoid fact different shape functions
may be used for different variables without affecting the symmetry of the formulatio
although usually there is no need to do this. These approximations lead to the following
formulation:

(K+Kd=F (52)
K=AM K, K=K, F=4f° (53)

K = [k&yop) - K = [Keyyp] o= {18} (54)
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Keaiyojy = di18j1 oV Na s VR = Nakc®Np) d€2, (55)

Koy = /Be(NaYiJ Np — N, Zij Np) dB, (56)

fai = 5i1/1~e Nah dr. (57)

Here(ai) is the index associated with nodand “degree of freedom”(fori =1, ..., K),

and similarly for(bj). Also, Ng is the number of elementstg':e'l is the assembly operator,
8ij is the Kronecker delta, ar@®, 3%, andI"® denote, respectively, the part@f B, andI
associated with elemest The FE formulation (52)—(57) i€° andsymmetricas desired.

The solution of (52) yields the vectdrwhose entries are the approximate nodal value
of U (see (51)). These nodal values include values iofthe interior domair2 as well as
values ofvj, namely, tangential derivatives afalong 5. The latter may be of interest to
the analyzer; if not they should simply be ignored.

4. SYMMETRIC ARBITRARILY HIGH-ORDER CONDITIONS
FOR THE TIME-DEPENDENT CASE

Now we consider the time-dependent scalar wave equation governing in the plane out
an obstacle:

U= c®Veu + f. (58)

Here a dot indicates differentiation with respect to tirnés the wave speed, anflis a
given function with local support which is strictly contained in the finite donfai®n the
obstacle boundary, a Neumann condition holds:

0
M_h onr. (59)
v

Initial conditions are given as well:
u=u, u=v att=0. (60)

Hereu, andv, are given functions with local support strictly containeddnAs before,
we introduce a circular artificial boundaBwith radiusR which encloses (see Fig. 1b).
On B, an NRBC is applied, which is assumed to have the form (3). In the present case,
operatorL ¢ involves temporal and spatial derivatives.

4.1. NRBCs Involving Temporal and Even-Order Tangential Derivatives
We start with the case where the initial sequence of NRBCs involves temporal g

evenorder tangential derivatives. This is a generalization of the case considerec
Section 2.1. The€K, P)-order NRBC has the form

Ju K P .
——=>"Ye;ou onB, (61)

where thex; are real constants.
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As before, the idea is to introduce appropriate auxiliary variables to reduce the orde
the derivatives. The vector of variablesis of lengthKP and is defined as

UT={U vio -+ VUK-10 Vo1 V11 - VUK-11 -+ VoP-1) -*° U(Kfl)(Pfl)}-
(62)

Here
vmn = 92"3"u  onB. (63)

Our goal is to replace the NRBC (61) and the relation (63) by an AHOC of the form

—2—;‘@ = SU+RU" +PU +QU", (64)
where all the arrays are of dimensik® and all the four matrices asymmetricUnlike the
elliptic case, there are many ways to construct such matrices. We choose the constru
that is obtained by treating both types of derivatives analogously to the treatment of
tangential derivatives in the elliptic case (Section 2.1). This is done in two steps. First
“freeze” the time derivatives (or pretend tf#is a scalar constant) and reduce the order o
the tangential derivatives as in Section 2.1. This yields maticasdZ (cf. (11) and (12)),
whose entries involve time-derivative operators. Then we reduce the time derivative:
each matrix entry using again an analogous procedure. We omit the details of the derive
and present the end result.
The matricess, R, P, andQ are

= 0 0 0 0 0 |
0 -E -Es —Ep_2 —Ep_1 —Ep
0 —-E3 —E4 —Ep.1 —-Ep O
S=: : : : : : Co| (65)
0 —-Epo, —Ep_1 —Ep 0 0
0 —-Ep;1 -—Ep 0 0 0
| 0 —Ep 0 0 0 0 |
Ris like S, but each block; is replaced by, (66)
[ E; E, Es ... Ep.» Ep_1 Ep]|
E Es E4 ... Ep.1 Ep O
Es Es Es ... Ep 0 0
P=| t roror (67)
Ep 2 Ep.1 Ep O 0 ... 0
Ep1 Ep 0 O 0 ... 0
| Ep 0 0 O 0 .. 0]

Q s like P, but each bloclg; is replaced byF;. (68)
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Each of the block&; andF; appearing above islkd x K matrix. They are given by

0j 0 0 0 0 0
0 - —a] ce TOK-2)] TUK-Dj  TOK]
0 —Qagj —Q4j . —Q(K-1)j —QKj 0
£ = . (69)
0 —Q(K-2)j] —TK-1)j —OAKj 0 0
0 —Q(K-1)j —QKj 0 0 0
|0 —a; 0 0 0 0 |
[ o1j 2] azj ... (K-2)] QK-D)j O‘KJ_
a2 a3gj Qg ... O(K-1)j aKj 0
a3j Q4| asj ... aKj 0 0
Fi= ; : N : : Cl- (70)
AK-2)] OK-1)j OKj 0 0 0
Q(K-1)j aKj 0 0 0 0
o o 0 0 0 .. 0]

The two-levelstructure of this construction is clear. Note the analogy betvedlethese
matrices and the matric&andZ (cf. (11) and (12)) in the elliptic case.

4.2. Other Cases

If the initial sequence of NRBCs involves time derivatives &oth even and odthn-
gential derivatives, namely,

Ju K P )
_722205”89’3“ OnB, (71)

then, although the FE formulation cannot be symmetrized, we employ a procedure analog
to that of Section 4.1. This results in the symmetric AHOC

au . .
5-e1=SU+RU +PU+QU. (72)

which is the same as (64) except that finst tangential derivative appears here instead o
the second. The matric&R, P, andQ remain the same as in Section 4.1.
If the initial sequence of NRBCs involves time derivatives eantlal derivatives, namely,

Ju K P )
——=> > ajdlofu onB, (73)

then, as in Section 2.3, there are two ways to construct a symmetric AHOC. The first i
treat ther -derivatives as thé-derivatives have been treated above. Then, analogously
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(72), the resulting symmetric AHOC is
au . .
_8781=SU+ Ro:U 4+ PU + Qa, U, (74)

with the same coefficient matrices as before. The second way is to use the wave equatior
recursively to replace the radial derivatives by (even-order) tangential and time derivati
(the procedure being similar to the one discussed in Section 2.3). This reduces the @
NRBC to the form (61), but with the;, involving the 3, operator. Hence the resulting
symmetric AHOC is of the form

8U ' " W\ ’
——e1 = SpooU + So01U + So10U” + Si000r U + So11U"+ S1010r U

ar
+ S1109 U” + S1118, U”. (75)

Finally, we consider the case where the initial sequence of NRBCs invalvgpes of
derivatives—temporal, tangential, and radial:

K M P
au i
_aT — E E E O[jm|89J armatlu onB. (76)

j=0 m=0 =0

Thus there are again two avenues for symmetric AHOC construction. First, one may t
each type of derivativeeparatelyas in Section 2.1. This leads tdtaee-levekxtension of
the two-level construction in Section 4.1 and yields a symmetric AHOC of the form

ou

5 8= SoooU + So01U + So10U’ + S1009 U + So11U’ + S1018: U

+ S1100r U’ + S1118: U’ (77)

Here, the matriceS; are of dimensiok M P. They have the same structure as the matrice
SandPin (65) and (67). Each block in these matrices has again the same structure, wil
in turn contains smaller subblocks. Each such subblock has yet again the same structur
now containing scalars for entries, as in (69) and (70).

Second, one may eliminate the radial derivatives by using the wave equation (58
reduce the given NRBC to the form (71), which in turn leads to the symmetric AHOC (7
but with coefficients involving the operatéy. Written differently, this AHOC again has
the form (77).

5. FINITE ELEMENT FORMULATION—THE TIME-DEPENDENT CASE

Now we present the semidiscrete FE formulation for the problea @onsisting of the
wave equation (58), the boundary condition on the obstacle surface (59), the symme
AHOC (64) on the artificial boundarg, and the initial conditions (60).

As inthe elliptic case, a weak form of the problem can be written in terms of the unkno
vectorU and the weighting vectoV (cf. (47)). The problem is then discretized in space
using the Galerkin FE method. In each element, the funcWéfe andU(x, t) are replaced
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by their finite-dimensional approximations

Nen Nen
W) =D WaNa(0, U0t =) dat)Na(X). (78)
a=1 a=1

As inthe elliptic case, the fact that the same shape functiyrzse used here for the variable
u and for all the variables; is a matter of choice and not a constraint of the method. Thes
approximations lead to the following FE linear dynamic system:

Md(t) 4+ Cd(t) + Kd(t) = F(t). (79)

This system is accompanied by appropriate initial conditions. The vector of initial valu
is easily obtained: it depends solely on the given functisnandv, (see (60)) since all
the auxiliary variablesm,, are defined along only and thus, according to our assumption,
vanish identically at timé = 0. The dynamic system (79) may be solved by a standar
time-integration method, such as one of the Newmark family of schemes.

The expressions for the matrices and vectors appearing in (79) are

M=AMme, C=AMc K=AY K, F=4k7fe (80)
m® = [MGiep) - = [CGop] > K= [Kaep] - FF=1[fa]. @D
MGaiybj) = 5i15j1/Qe NaNp d€2, (82)

Claiybj) = c /Be (NaPj Np — N2 Qi N)) dB, (83)

K)o =6i18,-102/ VNa~VNbdQ+cz/ (NaSj N, — NLRj Ny dB,  (84)
Qe Be
f(‘;i):&l/ NafdQ+8i1/ Nahdr. (85)
Qe re

The matricesS, R, P, Q are those given in (65)-(68). Note tdampingterm Cd in (79),
which originates only from the AHOC (64) dfi (the original problem having no physical
damping associated with it). Note also the symmetry of the element-level FE matric
me, c®, andk®, which implies the symmetry of the global-level matrié&sC, andK in (79).

6. NUMERICAL EXPERIMENTS

Now we present the results of some numerical experiments for the ctisediarmonic
waves(Sections 2 and 3), with the symmetric AHOCsBnwhich are obtained from the
localized DtN condition$8, 9]. The latter NRBCs have the form (4) and thus lead to the
AHOC (10). Preliminary results are reported in [21]. See [8] and [9] for details on ho
the coefficients; in (4) (and (10)) are defined. These two papers reach the same expres:
for «j in two different ways: in [8] a local NRBC is constructed which exactly annihilate
the firstK cylindrical modes of the reflected wave, while in [9] the local NRBC of orde!
K is found which is closest to the exact DtN condition in thenorm. The latter approach
leads to a two-parameter family of NRBCs, and when the two parameters coincide
obtains the localized DtN conditions.
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FIG. 2. Finite element mesh for the radiator problem.

In [8] these NRBCs were implemented and tested in their original form, namely, wi
high-order derivatives appearing explicitly in the FE formulation. To enable this, spec
FEs with high-order regularity were used in the layer adjacetf.tdhis procedure was
associated with two difficulties: (a) the NRBC ord€rcould not be taken to be very large,
because the programming of the special high-order FEs became too complex; (b) the €
order NRBCs turned out to be unstable. The latter fact has been theoretically verifie
[8, 22]. Thus, only the odd-order localized DtN conditions are usable in their original fort

We consider a circular radiator of radias= 0.5 in an infinite plane. Time-harmonic
waves are propagated from the radiator's boundanyith wave numbek = 1. OnT" we
prescribe the values cg8, wherej ranges from 0 (uniform radiation) to 5. We introduce
a circular artificial boundarys of radiusR = 1 around the radiator (see Fig. 1b). Thus the
computational domaite is the annulug <r < R. On B we apply the symmetric AHOC
(10) which is obtained from the sequence of localized DtN conditions. Figure 2 shows
FE mesh, where bilinear quadrilateral elements are employed throughout. This means
bilinear shape functions are used toin 2 and linear shape functions are usedbior all
the auxiliary variables;.

Table | compares the exact solution with the FE solution obtained for different AHO
ordersK and for different radiation harmonigsThe value shown in all cases is the real par
ofthe solutioruatr = Randd = 0. Naturally, all approximate solutions deteriorate when
becomes larger, since then the solution becomes more oscillatory while the mesh resolt
remains the same. For a fixed valug othe smallest error is obtained fiir= j. Increasing
K further does not improve the result. Rér> j, the error associated with truncating the

TABLE |
Real Part of Solutionuatr =Rand @ =0
j Exact K=1 K=2 K=3 K=4 K=5
0 0.630 0.632 0.632 0.632 0.632 0.632
1 0.565 0.568 0.568 0.568 0.568 0.568
2 0.303 0.322 0.303 0.303 0.304 0.304
3 0.138 0.132 0.115 0.134 0.134 0.134
4 0.067 0.049 0.037 0.102 0.059 0.059
5 0.033 0.017 0.009 —-0.019 0.010 0.026
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TABLE 1l
Computational Parameters for Different NRBC Orders

Property K=1 K=2 K=3 K=4 K=5
Number of DOFs 120 160 200 240 280
Condition number 46.3 103.8 191.3 374.9 537.2
Relative CPU time 1.0 2.0 34 6.1 10.0

infinite domain is in fact zero. The error which remains is the FE discretization error anc
not related to the NRBC. This error is about 0.3% foe 0 (uniform radiation) and about
23% forj = 5.

Table 1l shows the total number of degrees of freedom, the condition number, and
relative CPU time for the different NRBC ordeifs All of these computational parameters
are monotonely increasing functionskof Note the very low condition numbers obtained.
In [8], for the localized DtN conditions in their original high-derivative form, the conditior
numbers observed were orders of magnitude larger. Note als&thab corresponds to
an NRBC which involves a tangential derivative of order 10 (cf. (4)). With a standal
FE formulation (i.e., with no auxiliary variables) this would requ@é continuity along
B, which is very hard to achieve in practice. However, in the AHOC metkodan be
increased very easily to any desired large value, since it is simply an input parameter.

One may wonder how the condition number growdabecomes very large, e.g., with
K = 100, which may be needed for extremely oscillatory solutions. The answer is that
such short waves a very fine mesh is needed, which would result in a high condition nun
regardless of the boundary condition used3in fact, we have numerical evidence which
shows that with fine resolution the density of the mesh is the dominant factor in determin
the condition number, and that if we ignore the accuracy aspects and use a coarse mes
condition number foK = 100 would be about 50,000. This is still not regarded as a ver
large condition number. Thus, the boundary condition does not render the scheme n

6.50

4.50

2.50

1n:7~9)

5050 f---------f-------—-

-1.50

i Eatatataiatlial o <t A

-3.50

-5.50
0 2 27

SR

FIG. 3. Boundary condition orl". This is the fifth-order polynomiat(¢) = 0.4 — 24.029 + 31.259% —
13.709° + 2.479* — 0.169° which has 2 -periodicity in both the function and its first derivative.
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0.8

Im(u(Res,®))

| 1
0 /2 0 3n/2 2n

FIG. 4. Imaginary part of the solution of. Comparison of the exact solution, the first-order AHOC, and the
fifth-order AHOC.

unstable than it already is due to the fine interior discretization. Detailed numerical res
for problems with highly oscillatory solutions will be presented in a future publication.

The example just considered is degenerate in the sense that the exact solution is a
cylindrical mode. Now we consider another problem where the exact solution involves
infinite number of modes. To this end, we replace the boundary condition on the radiz
surfacel” by the fifth-order periodic polynomial shown in Fig. 3. The imaginary part o
the solution o3 is shown in Fig. 4. Three solutions are compared in the figure: the exe
solution and the numerical solutions obtained with the AHOCS of orders 1 and 5. As s
in the figure, theK = 5 solution is not distinguishable from the exact solution.

We observe from the numerical results that the AHOGt&ble for all orders K As
mentioned previously, this is opposed to the situation occurring when the localized C
conditions are used directly in the form (4) [8, 22]. Thus, in addition to all other advantag
the derivative-order reduction performed in the AHOC method has a stabilizing effect. T
also demonstrates the known fact that one has to be careful when referring to the stal
of a certain NRBC; stability is not a property of the NRBC alone, but a property of tt
NRBC, the method of its discretization, and the interior scheme combined.

7. CONCLUDING REMARKS

In this paper we have shown how to construct a local boundary condition of an arbitra
high order with a symmetric structure, which is equivalent to a given high-order NRBC
does not involve any high-order derivatives. Such AHOCSs, if incorporated in a numeri
code, allow very easy accuracy control: to increase accuracy the user has only to incr
the order of the AHOC which is simply an input parameter of the code. In this respe
symmetric AHOCs (which are local) are very similar to nonlocal NRBCs. Moreover,
discussed in the Introduction, if the truncation error associated with the AHOC of idrder
vanishes a&K — oo, itis justified to think of the AHOC asxactjust as the nonlocal DtN
condition is regarded as exact.
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We have numerically demonstrated the performance of one example of symme
AHOCs, namely, those obtained from the localized DtN conditions, in the case of tirr
harmonic waves. In this case, the symmetric AHOCs lead to a symn@iE scheme
which is local, stable for all ordets, very accurate (as far as the truncation of the infinite
domain is concerned), efficient, easy to implement, well-conditioned, and allows the ust
standard element shape functions for all the variables. With regard to stability, it turns
in the case considered numerically that the symmetric AHOC, with low-order derivativ
and auxiliary variables, is more stable than the original NRBC, with only one variable k
with high-order derivatives.

Implementation of the AHOCSs in the time-dependent case is under way. Results will
reported in a future publication. Theoretical stability analysis and error estimates for
AHOC form of the localized DtN conditions and of other sequences of NRBCs are also
be investigated.

APPENDIX: DERIVATION OF Y AND Z IN THE ELLIPTIC CASE
We consider th& -dimensional system of equations (7) or (9), i.e.,

au
—a—rel =AU +BU” onB, (A1)
which constitutes a nonsymmetric AHOC. Hexeis a K-vector whose first entry is one
and all other entries are zero. We construct an equivalent AHOC of the form (10); i.e.,

au
~ar e =YU+2ZU” onp5, (A.2)
where the matrice¥ andZ are symmetric.

To solve this problem we rephrase it as a problem in linear alg€hikeen the linear
system of equations

AX + By = sey, (A.3)

where s is a scalar and and B are the matrices defined by (®btain by applying
elementary operations on the matricamnew linear system of equatigns

YX+ Zy = se, (A.4)

whereY andZ are symmetricWe shall show now how to derivé andZ, and in doing so
we shall prove that the construction is unique.

First, we recall from linear algebra that a matixis obtained from a matriA by
elementary operations if = QA for some nonsingular matriQ. Thus, we multiply the
original system (A.3) byQ on the left, which yields

QAX+ QBy = sQe. (A.5)

This should yield (A.4); hencé = QAandZ = QB are symmetric, and we ha@®, = ey,
which means that the first column @fis e;. Now, we write the matrice4, B, andQ in the
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following partitioned form:

ap ar 0 b 149
A= B = = A.
{0 I], {e F}, Q [0 T], (A6)
where
aT={Ol1 (07 O(K_l}, bT={0 0o --. OIK}, (A.7)
e= —e, F:—[ez e --- eK_]_O]. (A8)

In (A.6)—(A.8),! is the(K — 1) x (K — 1) identity matrix,g; is a vector with zero entries
except a unit entry in théth position,q is a (K — 1)-vector, andT is a (K — 1)-matrix.
From this we calculate

—qu b'+q'F
—Te, TF

ap a' +q'

. 1 (A.9)

Y:QA:[

, Z:QB:[

From the symmetry o we immediately deduce thdt is symmetric and thay = —a.
Using the latter equality as well as (A.7) and (A.8) in the expressiod far(A.9) yields

ap oy e aK—l‘aK

z— ol (A.10)

0
Thus, we have recovered the first row and first column in the mat(of. (12)). We now
use the facts that given by (A.10) should be symmetric and tHattself should also be
symmetric, and continue in this fashion recursively, to deduce finallyvizetdZ must be

the matrices given by (11) and (12). Since there was no freedom in the deduction pro
above, the construction is proved to be unique.
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